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15. SUPPLEMENTARY NOTES 

This  r e p o r t  desc r ibes  a developmental and eva lua t ion  program on polyimide 
laminates  as p r in t ed  wi r ing  boards.  The development of an  experimental  polyimide 
wi th  l o w  l i n e a r  c o e f f i c i e n t  of thermal expansion normal t o  the plane of the board 
i s  d iscussed ,  and i t s  p r o p e r t i e s  are evaluated along wi th  two commercial polyimide 
p r in t ed  wi r ing  boards f o r  comparison wi th  the type G-10 epoxy board. 
cyc l ing  d a t a  ind ica t e  an  urgent  need f o r  e f f e c t i v e l y  c o n t r o l l i n g  the expansion 
normal t o  the  plane of the  board i n  order  t o  minimize so lde r  j o i n t  damage. 
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DEVELOPMEMT AND EVALUATION OF 
POLYIMIDE LAMINATES FOR PRINTED 

WIRING BOARD APPLICATIONS 

SUMMARY 

The e f f o r t s  of t h i s  program have been d i r e c t e d  toward development 
of a con t ro l l ed  expansion p r in t ed  wir ing  board based on a polyimide 
laminate.  The bas i c  cons t ruc t ion  of the board c o n s i s t s  of t h ree  l a y e r s  
of t r i d i r e c t i o n a l l y  woven c l o t h  impregnated wi th  a lumina- f i l l ed  polyimide 
r e s i n .  Faced on each s i d e  of t h i s  i s  a s i n g l e  l a y e r  of scrim c l o t h  
followed by copper c ladding.  

The experimental  board and two commercial polyimides have been 
evaluated i n  terms of processing as w e l l  a s  e l e c t r i c a l ,  phys i ca l ,  and 
mechanical p rope r t i e s  f o r  comparison wi th  type G-10 epoxy. Thermal 
cyc l ing  tests have been c a r r i e d  out  from -55 t o  +lOO°C f o r  500 cyc le s  
t o  determine incidence of cracking a s  a func t ion  of board type and 
j o i n t  conf igura t ion .  The o v e r a l l  so lde r  j o i n t  cracking caused by the  
experimental  board was s i g n i f i c a n t l y  lower than  t h a t  f o r  e i t h e r  the  
epoxy o r  the commercial polyimide boards. 

INTRODUCTION 

I n  recent  years  the des igners  and use r s  of high r e l i a b i l i t y  
e l e c t r o n i c  c i r c u i t s  have been faced wi th  the r ecu r r ing  problem of 
f a i l u r e s  i n  p r in t ed  wir ing  boards (PWB). Many of the  e l e c t r o n i c  
hardware problems i n  the Sa turn  program could be r e l a t e d  t o  so lde r  
j o i n t  cracking and a hos t  of modi f ica t ions  were incorpora ted ,  inc luding  
stress r e l i e f  bends and plated-through ho le s ,  t o  overcome the  cracked 
j o i n t s .  The o r i g i n  of cracking i s  r e l a t e d  d i r e c t l y  t o  the inherent  
expansion c h a r a c t e r i s t i c s  of the ma te r i a l s  comprising the so lde r  j o i n t .  
The d i f f e rence  i n  l i n e a r  c o e f f i c i e n t  of thermal expansion between the  
m e t a l l i c  and nonmetal l ic  elements a t f e c t i n g  the  so lde r  j o i n t  i s  q u i t e  
s i g n i f i c a n t .  The s t r e s s e s  on the PWB j o i n t s  dur ing  thermal cyc l ing  
arise pr imar i ly  from two sources:  (1) The conformal coa t ing  appl ied  
over the FWB sur face  which has a high l i n e a r  c o e f f i c i e n t  of thermal 
expansion and t ransmi ts  s t r e s s  through the component lead t o  the j o i n t ,  
and (2) 
board material i t s e l f  i n  the a x i s  normal t o  the plane of the board. 
This  r e p o r t  concerns the  l a t t e r  problem and desc r ibes  the  development 
of a new polyimide board t o  overcome t h i s  def ic iency ,  toge ther  w i t h  
eva lua t ion  of s e v e r a l  candidate  polyimide FWB ma te r i a l s .  

The r e l a t i v e l y  h igh  c o e f f i c i e n t  of thermal expansion of the  



BASIC MATERIAL CONSIDERATIONS 

The most commonly used PWB s u b s t r a t e  i n  the  e l e c t r o n i c s  indus t ry  
i s  the  epoxy-f iberglass  laminate .  The d i r e c t i o n  of o r i e n t a t i o n  of 
the g l a s s  reinforcement i s  i n  the plane of the board g iv ing  ve ry  good 
con t ro l  of expansion c o e f f i c i e n t  (a) i n  t h a t  axis. However, t he re  i s  
no reinforcement normal t o  the  plane of the board and t h i s  i s  manifested 
i n  a much h igher  a -va lue  i n  the  th ickness  d i r e c t i o n  as i l l u s t r a t e d  i n  
Figure 1. Here i t  i s  seen  t h a t  a i n  the plane of the board i s  approx- 
imately 15 x l o a 6  in / in - "6  a t  50"C, as opposed t o  60 x 10-6 normal t o  
the plane of the board. 
a t  least  four - fo ld .  This  i s  a c r i t i c a l  value,  s ince  e l e c t r o n i c  component 
leads extend through the  board t o  be terminated on the  o t h e r  s i d e  by a 
so lder  j o i n t  and the  lead o r i e n t a t i o n  i s  normal t o  the plane of the 
board. The s t r e s s e s  generated by the  h i g h a - v a l u e  of the board can be 
t ransmi t ted  d i r e c t l y  t o  the r e s t r a i n i n g  so lde r  j o i n t .  Figure 1 a l s o  
emphasizes the presence of a g l a s s  t r a n s i t i o n  (Tg) a t  95 - 100°C above 
which the a-value inc reases  exponent ia l ly .  This phenomenon i s  charac t -  
e r i s t i c  of ma te r i a l s  such a s  epoxies and f u r t h e r  aggravates  the expansion 
problem i n  the reg ion  above 75OC. 

Thus, the expansion an iso t ropy  i n  the board i s  

The geometry of a t y p i c a l  PWB j o i n t  assembly i s  shown i n  Figure 2.  
I n  t h i s  case the re  i s  the a d d i t i o n a l  f ea tu re  of the plated-through hole .  
I n  prepara t ion  o f  t h i s  j o i n t  the lead and genera l  hole  area a r e  heated 
by the i r o n  i n  order  t o  flow the so lde r  on the lead terminat ion and 
through the  plated-through hole .  The ad jacent  board m a t e r i a l  i s  hea t ing  
up accordingly,  but  w i t h  i t s  s i g n i f i c a n t l y  h igher  a-value normal t o  the 
board plane,  it i s  expanding a t  a f a s t e r  r a t e  than the m e t a l l i c  components 
of the j o i n t .  The so lde r  has  now flowed through the  hole  and the i r o n  
is  removed t o  a l low the j o i n t  t o  s o l i d i f y ,  The board i s  s t i l l  i n  a n  
expanded condi t ion  when the  j o i n t  s o l i d i f i e s  so  t h a t  some r e s i d u a l  s t r e s s  
i s  inescapably developed. Subsequent thermal cyc l ing  cont inues t o  stress 
the j o i n t  u n t i l  cracking occurs ,  as shown i n  Figure 3 ,  looking down on 
the top of the so lde r  j o i n t .  Here, a crack has propagated around the 
lead and can r e s u l t  i n  e l e c t r i c a l  i s o l a t i o n  of the  component lead  from 
the conductor pa t t e rn .  

Table 1 compares the a -va lues  f o r  var ious  PWB j o i n t  m a t e r i a l s ,  
showing the  la rge  d i s p a r i t y  between the epoxy board and the o t h e r  
c o n s t i t u e n t s .  A t  t h i s  po in t ,  the polyimide-based laminate appeared 
t o  o f f e r  a p o t e n t i a l  s o l u t i o n  t o  the  problem. The expansion cha rac t e r -  
i s t ics  of a commercial po ly imide / f iberg lass  laminate are a l s o  given i n  
Table 1. 
t o  the plane of the board than the  epoxy. Also, the mechanical, thermal 
and e l e c t r i c a l  p rope r t i e s  of the polyimide m a t e r i a l  a r e  gene ra l ly  q u i t e  
good. It has the a d d i t i o n a l  advantage of no g l a s s  t r a n s i t i o n  (Tg) i n  
the expected se rv ice  range of the p r in t ed  wir ing  boards. Thus, t h i s  

The polyimide board has a n  inhe ren t ly  lower a-value normal 
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FIGURF: 3 .  CRACKING OF A STRIISSED J O I N T  ON 
EPOXY PWB DURING THERMAL CYCLING 
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m a t e r i a l  represented the l o g i c a l  s t a r t i n g  po in t  i n  development of a 
minimum-expansion board which was equiva len t  t o  G-10 epoxy i n  o the r  
PWB requirements.  

TABLE I. EXPANSION OF CIRCUIT BOARD MATERIALS 

Mate r i a l s  

Epoxy Resin 

Coef f i c i en t  of Th m a 1  
Expansion X 10 % 

( in/ in- 'c)  

80-100 

30% Epoxy Laminateyc 60 

Component Le ads 15-20 

Kovar 5 

63/37 TinlLead Solder  24 

Polyimide Resin 50-55 

30% Polyimide Laminatea 45 

9~30% Resin by weight i n  laminate;  measured below Tg and normal t o  
plane of board. 

DEVELOPMENT OF EXPERIMENTAL POLYLMIDE LAMINATE 

Mate r i a l s  Sec t  ion 

An e f f o r t  w a s  i n i t i a t e d  t o  develop a new board design,  based on 
the polyimide material ,  t h a t  would minimize a s  much as poss ib l e  the 
c o e f f i c i e n t  of thermal expansion (a) normal t o  the  plane of the  board. 
Other bas i c  requirements were a l s o  imposed, a s  shown i n  Table 2. The 
need f o r  some s o r t  of p a r t i c u l a t e  f i l l e r  was a n t i c i p a t e d ,  i n  order  t o  
con t ro l  the expansion of the laminate.  Battelle Memorial I n s t i t u t e  
provided con t r ac tua l  support  i n  the development of a polyimide-based 
laminate (Ref. 1). The c o n t r o l  of expansion was expected t o  r e s u l t  
from th ree  f a c t o r s :  

(1) Use of a p a r t i c u l a t e  f i l l e r  wi th  low a-va lue .  

6 



(2) Use of polyimide r e s i n  whose a -va lue  i s  inhe ren t ly  lower 
than  t h a t  of epoxy. 

(3) Use of a three-dimensionally woven g l a s s  c l o t h  reinforcement .  

The bas i c  laminate des ign  u t i l i z e s  three  l a y e r s  of Tricon HS-1, th ree  
dimensional ly  woven f a b r i c  a s  the  core  of the laminate ,  w i t h  one l aye r  
of S t y l e  7628 g l a s s  f a b r i c  on e i t h e r  s i d e  of the three- layer  s t a c k  t o  
provide an adequate sur face  f i n i s h  f o r  the PWB a p p l i c a t i o n .  

TABLE 11. BASIC REQUIREMENTS FOR EXPERIMENTAL POLYIMIDE PWB LAMINATE 

Expansion (Normal t o  Board Plane) 15-20 x in/in-OC 

Thermal S t a b i l i t y  

Flammability 

Outgas s ing 

S tab le  a t  2 O O O C  

Non-Burning (Oxygen-Enriched 
Environments ) 

0.2%/cm 2 /hour,max. (25OC t o  100°C) 

Thermal Conductivity 15 x LOm4 cal/sec/cm2/cm/"C,min. 

PWB Processing Equivalent  t o  G - 1 0  Epoxy 

Figure 4 i l l u s t r a t e s  conceptual ly  the laminate composition, The polyimide 
r e s i n ,  P-13N, was chosen f o r  i t s  add i t ion  c ros s l ink ing  process ,  bonding 
c h a r a c t e r i s t i c s  t o  the copper f o i l ,  and s u i t a b i l i t y  i n  laminate processing.  
The P-13N i s  suppl ied a s  a 40 percent  s o l i d s  s o l u t i o n  i n  dimethylformamide 
i n  the form of a polyamic ac id  prepolymer. This  type of r e s i n  formulat ion 
can be terminated wi th  an o l e f i n i c  r e a c t i v e  monomer such as nadic  anhydride.  
The g l a s s  c l o t h  i s  impregnated wi th  t h i s  s o l u t i o n  and B-staged t o  an 
imidized prepreg, followed by s t ack ing  t o  form the laminate s t r u c t u r e  
and a p p l i c a t i o n  of h e a t  and pressure .  One concept of t h i s  sequence i n  
terms of polymer s t r u c t u r e  i s  shown i n  Figure 5. A p r i n c i p a l  disadvantage 
of convent ional  polyimide formulat ions i s  the f a c t  t h a t  the condensation 
process  r e s u l t i n g  i n  imid iza t ion  of the polymer i s  c a r r i e d  ou t  a s  p a r t  
of the  f i n a l  laminate-forming s t e p .  This r e s u l t s  i n  entrapment of the 
v o l a t i l e s  from the  imidiza t ion  process i n  the laminate body and formation 
of vo ids .  The P-13N system, u t i l i z i n g  a d d i t i o n  polymerization processes  
f o r  f u r t h e r  cha in  ex tens ion  and/or c ros s l ink ing ,  genera tes  no v o l a t i l e s  
and the  void conten t  of the laminate i s  reduced t o  a minimum. 
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The p a r t i c u l a t e  f i l l e r  chosen f o r  t h i s  laminate was the  A - 1 4  
h igh- f i red  aluminum oxide,  which provided no t  on ly  c o n t r o l  of a normal 
t o  the laminate  plane but  a l s o  increased  thermal conduct iv i ty  of the  
laminate f o r  improved func t ion  as a h e a t  s ink  f o r  hea t -genera t ing  
components. The h i g h - f i r i n g  t reatment  of the alumina reduces i t s  
capac i ty  f o r  moisture absorp t ion  and r e s u l t s  i n  b e t t e r  e l ec t r i ca l  
p rope r t i e s  of the laminate.  
in/in-"C, so  t h a t  i t  i s  q u i t e  e f f e c t i v e  i n  counterbalancing the h igher  
expansion of the polyimide matr ix .  

The a -va lue  f o r  t h i s  f i l l e r  i s  5-10 x l o m 6  

Laminate Fabr i ca t ion  Process 

The optimized laminate  design f o r  the experimental  polyimide 
board i s  shown i n  Table 3.  The f a b r i c  impregnation was c a r r i e d  out  on 
a Dixon coa te r  us ing  an impregnating composition of 75.2% r e s i n  so lu t ion ,  
24% alumina and 0.77% A-1100 s i l a n e  coupl ing agent .  

TABLE 111. OPTIMIZED POLYIMIDE PWB LAMINATE COMPOSITION 

Resin: P-13N, 40% Sol id  Solu t ion  

Reinforcement: 3 P l i e s  HS-1 T r i d i r e c t i o n a l l y  Woven Fabric  p l u s  
1 Ply  S ty l e  7628 Glass Cloth on e i t h e r  Side of 
HS-1 Core 

F i l l e r :  A-14 High-fired Alumina, 20-22% by Volume 

Cladding: 2 oz. Copper wi th  Nickel S t r i k e  

This mixture could be success fu l ly  homogenized on a b a l l  m i l l  a t  the 
20-22% f i l l e r  l e v e l  wi thout  subsequent sedimentation. (A complete 
d e s c r i p t i o n  of the m a t e r i a l s  and board f a b r i c a t i o n  procedure used by 
B a t t e l l e  are given i n  the  appendix t o  t h i s  r e p o r t ) .  The impregnated 
HS-1 and 7628 f a b r i c s ,  both wi th  r e s i d f i l l e r  conten ts  of 35% by weight,  
were t y p i c a l l y  d r i ed  1 /2  hour a t  150°F (66OC) and B-staged f o r  1 hour 
a t  400°F (204°C). The prepreg shee t s  were s tacked by o r i e n t i n g  each 
l aye r  a t  a 90 degree o r i e n t a t i o n  t o  the ad jacent  l aye r .  The copper 
f o i l  was independently coated wi th  P-13N using these  same hea t ing  
condi t ions .  

The stacked p l i e s  were t y p i c a l l y  heated 30 seconds a t  600°F (316°C) 
p r i o r  t o  pressure  a p p l i c a t i o n .  Pressures  i n  the  range of 1000-15000 p s i  
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2 (6,894-10,341 KN/m ) were appl ied  f o r  1 hour a t  the p re s s  temperature 
of 600°F (316OC). The laminate q u a l i t y  was found t o  be s e n s i t i v e  t o  
the timeltemperaturelpressure parameters u t i l i z e d ,  However, i t  was 
found t h a t  d i f f e r e n t  time-temperature hea t ing  p r o f i l e s  could produce 
equa l ly  acceptab le  laminates.  Also, t e s t s  c a r r i e d  out  on mul t ip l e  
p repa ra t ion  of laminates  by s t ack ing  techniques i n d i c a t e  t h a t  s a t i f -  
f a c t o r y  laminates  can be prepared i n  t h i s  manner. Thus the board 
f a b r i c a t i o n  should be adaptable  t o  commercial p rac t i ce .  

A magnified c ros s - sec t ion  of the f in i shed  laminate i s  shown i n  
Figure 6. The opac i ty  of the r e s i n  matrix between r e in fo rc ing  p l i e s  i n  
t h i s  f i gu re  i s  i n d i c a t i v e  of the alumina f i l l e r  loading. The p ly  count 
i n  the f igu re  appears  higher  than s t a t e d  due t o  the  weave geometry of 
the 3 HS-1 p l i e s ,  

PWB EVALUATION STUDIES 

A t  t h i s  po in t  i n  the development program, two commercially a v a i l a b l e  
polyimide-glass laminates coded f o r  purposes of t h i s  s tudy  as A and B,  
were included f o r  comparative eva lua t ion .  These laminates  were obtained 
as 1 f t  shee t s  having a nominal thickness  of 0.062 inch,  w i th  2 02. 

copper cladding on both s i d e s .  These m a t e r i a l s  were subjec ted  t o  the 
e n t i r e  eva lua t ion  sequence descr ibed i n  t h i s  s e c t i o n ,  a long  wi th  the 
experimental  polyimide board. 

2 

A. Evaluat ion of Processing C h a r a c t e r i s t i c s  

1. D r i l l i n g  C h a r a c t e r i s t i c s .  This opera t ion  was of some concern 
i n  the case of the  experimental  board because of i t s  alumina f i l l e r  
conten t .  Alumina i s  abras ive  and could cause a d r i l l  wear problem, 
The i n i t i a l  d r i l l  speed assessed was approximately 22,000 rpm, based 
on normal d r i l l i n g  opera t ions  wi th  the G-10 epoxy board. A t  t h i s  speed, 
the d r i l l  generated dus t  from d r i l l  ho les  i n  a l l  the polyimide boards 
i n  c o n t r a s t  t o  the normally acceptable  ch ip  formation c o n s i s t e n t  wi th  
smooth hole formation. It was found t h a t  a reduct ion  i n  d r i l l  speed 
t o  a range o f  650-2200 rpm r e s u l t e d  i n  acceptab le  "chipping" i n  a l l  
polyimide boards,  a l though 900 rpm appeared t o  be a lower l i m i t  f o r  
the experimental  board. 
carb ide  d r i l l  (0.029 inch diameter) .  These t e s t s  i nd ica t ed  t h a t  more 
d r i l l  wear occured on a l l  polyimide boards than  on the G-IO epoxy 
boards,  wi th  the experimental  polyimide board causing the most s i g n i f i c a n t  
wear because of the alumina f i l l e r .  

This  determinat ion was made using a 852 

Addi t iona l  tests were c a r r i e d  ou t  t o  determine i f  the  d i f f i c u l t y  
i n  d r i l l i n g  the polyimide boards caused d i s r u p t i o n  of the copperl laminate  
bond of the copper pads on the d r i l l  break-out s i d e  of the boards. It 
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w a s  found t h a t  when an annular  r i n g  of a t  l e a s t  0.010-0.015 inch remained 
a f t e r  t he ,ho le  w a s  d r i l l e d ,  no debond problems occurred and the  copper 
pad/laminate i n t e r f a c e  was l e f t  i n t a c t  on the  break-out s i d e  of the 
board. Figure 7 i l l u s t r a t e s  the  i n t e g r i t y  of the copper pad, 
of the  experimental  board was used i n  t h i s  f i g u r e ,  and i s  t y p i c a l  of the 
r e s u l t s  obtained on the two commercial polyimide boards. The so lde r  
pad i n t e g r i t y  t es t s  were a l l  performed w i t h  an  epoxy-glass laminate 
serv ing  as a backing ma te r i a l  on the d r i l l  break-out s i d e  of the board. 
Good r e s u l t s  were obtained only i f  a hard shee t  such as the  epoxy 
laminate was used. 

A specimen 

It was determined through subsequent c leaning  and e t ch ing  
exposure t e s t s  on the polyimide boards, t h a t  the  d r i l l i n g  opera t ion  
should be performed before  any copper e t ch ing  opera t ions .  This would 
preclude any p r i o r  weakening of the copper/board adhesive bond. 

Examination of the hole  walls i n  the th ree  polyimide specimens 
revealed a f a i r l y  smooth su r face ,  gene ra l ly  equ iva len t  t o  the G-10 
hole  wa l l  q u a l i t y .  Sectioned views of the hole  walls from these specimens 
are shown i n  the  scanning e l e c t r o n  photomicrographs i n  F igures  8 and 9. 
This  represents  an important cons idera t ion  f o r  p l a t ed  through hole 
a p p l i c a t i o n s ,  where uniform p l a t i n g  th ickness  on the hole  w a l l  and minimum 
wicking a r e  d e s i r e d .  A s  shown i n  Figures  8 and 9,  the polyimide PWB 
hole  wal l s  are gene ra l ly  smooth and without  any d r i l l  marks. 
o f  bare g l a s s  f i b e r  reinforcement a r e  observed f o r  each polyimide ma te r i a l .  
This e f f e c t  appears  l e s s  pronounced on the  experimental  polyimide board 
specimen. 
good i n t e g r i t y  of the copper padllaminate i n t e r f a c e  both a t  t he  d r i l l  e n t r y  
( top of p i c t u r e )  s i d e  of the hole ,  and more c r i t i c a l l y ,  a t  the d r i l l  
break-out s ide  of the hole .  

Small a r e a s  

Also  as observed i n  Figure 8, the experimental  board shows 

- 2. 
could be 
pressure  
tendency 
requi red  

Shearing Charac t e r i s t i c s .  The commercial polyimides A and B 
sheared on a hand-shearing apparatus  using gene ra l ly  the same 
required f o r  the G-10 laminates ,  a l though- there  was some 
f o r  B t o  delaminate during shear ,  
s l i g h t l y  more pressure  t o  shear  and the r e s u l t i n g  edge appeared 

The experimental  board 

rougher than i n  the case of m a t e r i a l s  A and B. 

3. Etching and P l a t i n g  Procedures. The polyimide boards genera l ly  
were processable  by the s tandard e t ch ing  and p l a t i n g  s o l u t i o n s  and 
procedures u t i l i z e d  i n  epoxy PWB technology-with one notab le  except ion.  
The polyimide m a t e r i a l s  are degraded by s t r o n g  a l k a l i n e  so lu t ions .  The 
r ecu r r ing  imide chemical l inkage i n  the polymer backbone i s  s e n s i t i v e  
t o  base-catalyzed hydro lys is  and the  hot ,  bas i c  c leaning  s o l u t i o n s  
normally used i n  preparing epoxy boards f o r  e t ch ing  w i l l  chemically 
a t t a c k  the polyimide boards i f  the exposure time i s  s u f f i c i e n t .  For 
t h i s  reason, exposure of the  polyimide materials t o  s t rong  bas i c  
so lu t ions  must be held t o  an  absolu te  minimum. A t y p i c a l  c leaning  and 
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FIG1 

EPOXY PWB 

EXPERIMENTAL POLYIMIDE PWB 

JRE 8. LONGITUDINALLY SECTIONED HOLES FROM 
EPOXY AND EXPERIMENTAL PWB MATERIALS 
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PWB A 

PWB B 

FIGURE 9. LONGITUDINALLY SECTIONED HOLES FROM COMMERCIAL 
POLYIMIDE PWB A AND B 
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copper e tch ing  sequence f o r  the polyimide boards i s  given below: 

(1) 50% Aqueous NaOH a t  50-60°C f o r  30 seconds. 

(2) 25% Aqueous (NH4)2S208 a t  room tem 

(3) 25% HC1 a t  room temperature f o r  30 

(4)  Standard copper e t c h  wi th  FeC13 a t  125-130°F. (52-54OC). 

es  show no d e t e r i o r a t i o n  under these  proce 

The p la ted  through hole  processing f o r  these polyimide boards 
i s  under i n v e s t i g a t i o n  and w i l l  be discussed i n  an  addendum t o  t h i s  
r e p o r t .  

B. Mechanical, Thermal and Electrical  Evalua t ion  

The proper ty  t e s t i n g  of the candidate  boards was c a r r i e d  out  i n  
e with  MIL-P-139493, "P la s t i c  Sheet ,  Laminated, Metal-Clad 
ted Wiring) General Spec i f i ca t ion  f o r , "  wherever 
e s t i n g  was on a comparative bas i s  r e l a t i v e  t o  a type G-10  

appropr ia te  , 

1. Mechanical Property Testing. 

a .  Copper f o i l  Bond Strength.  The adhesive bond s t r e n g t h  
of the copper f o i l  t o  the PWB laminate i s  a c r i t i c a l  parameter which 

ied i n  some d e t a i l .  A standard sequence of environmental  
t e s t s  was c a r r i e d  ou t  i n  accordance wi th  MIL-P-13949E u t i l i z i n g  
t e s t  specimen shown i n  Figure 10. I n  a d d i t i o n  t o  the i n i t i a l  

pee l  s t r e n g t h  va lues  a t  room temperature,  measurements were a l s o  made 
a f t e r  so lde r  ba th  exposure, a f t e r  temperature cyc l ing ,  a t  e leva ted  
temperature,  and a f t e r  p l a t i n g  s o l u t i o n  exposure.  These values  a r e  

ed i n  Table 4 .  The so lder  exposure cons is ted  of 20 seconds 
l i q u i d  so lde r .  The p l a t i n g  s o l u t i o n  environment cons is ted  

u e n t i a l  exposure i n  sodium hydroxide, sodium cyanide,  and 
ac id  a s  def ined i n  MIL-P-13949E. The temperature cyc l ing  

t i ons  involved 5 cyc les  from -65°C t o  +125OC. 

The copper/board bond s t r eng th  was a l s o  assessed by a type 
of terminal  p u l l  t e s t ,  wherein specimens such a s  t h a t  shown i n  Figure 11 
were etched t o  provide a s e r i e s  of so lde r  pods. Buss w i r e  leads,  22 
gauge, were soldered t o  one s i d e  of the board us ing  so lde r ing  procedures 
i n  MSFC-STD-154. The leads  were then subjec ted  t o  a t e n s i l e  force  
normal t o  the plane of the board wi th  an I n s t r o n  t e s t e r  using a crosshead 
speed of 0.5 inches/minute.  The temperature was var ied  from room 
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FIGURE 10. COPPER FOIL PEEL STRENGTH TEST SPECIMEN 
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FIGURE 11. TERMINAL PULL SPECIMEN 
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temperature t o  the  mel t ing  po in t  of 60/40 t i n / l e a d  so lde r ,  approximately 
1 8 8 ° C .  The t e n s i l e  force  requi red  t o  p u l l  the so lde r  j o i n t  o f f  the 
boards as a func t ion  of temperature i s  summarized i n  Figure 12. 

TABLE IV.  PEEL STmNGTH OF COPPER FOIL ON PWB SUBSTMTES 

Expe r ime n t  a 1 Board Board EPOXY 
Condition Board A B Board 

Control: 2.03 

Af te r  Solder  Dip: 1.64 

Af te r  P l a t i n g  
Solu t ion  Exposure: 1.71 

Af te r  Temperature 
Cycling : 1-62 

Af te r  250°C 
Exposure : 1.49 

A t  150°C: 1.71 

A t  205 "C : 1.49 

A t  26O0C7k : 1.07 

(11.4) 2.12 (11.9) 2.54 (14.3) 2.65 (14.9) 

(9.2) 2.03 (11.4) 1.83 (10.3) 2.19 (12.3) 

(9.6) 2 .01  (11.3) 2.60 (14.6) 2.06 (11.6) 

(9.1) 2.31 (13.0) 2.06 (11.6) 1.89 (10.6) 

(8 .4 )  2.05 (11.5) 2.54 (14.3) 1.42 (8.0) 

(9.6) 1.57 (8.8) 1 .99 .  (11.2) 0.73 (4.1) 

(8.4) 1.42 (8.0) 1.89 (10.6) 0 

(6.0) 1.07 (6.0) 1.07 (6.0) 0 

( A l l  pee l  s t r eng ths  given i n  KN/M of width; pounds/inch i n  parentheses)  
A Copper s t r i p  underwent t e n s i l e  f a i l u r e  

b. F l exura l  S t rength .  The f l e x u r a l  s t r e n g t h  of the  candidate  
ma te r i a l s  was measured a s  a func t ion  of temperature from room temperature 
t o  260°C i n  order  t o  quan t i fy  the improved dimensional s t a b i l i t y  and 
s t r e n g t h  r e t e n t i o n  of the  polyimide laminates  a t  e leva ted  temperatures.  
The t e s t s  were performed i n  accordance wi th  ASTM D790, us ing  specimens 
having dimensions of 3.0 inches (7.62 cm.) long by 0.042 inches (1.07 cm.) 
wide. The f l e x u r a l  s t r e n g t h  was determined a t  room temperature,  149"C, 
204"C, and 260°C. The r e s u l t s  are p lo t t ed  i n  Figure 13 ,  wi th  f l e x u r a l  
s t r e n g t h  i n  u n i t s  of kilonewtons/rneter2. 

The candidate  boards were a l s o  thermally cycled t o  determine 
i f  any l o s s  of f l e x u r a l  s t r e n g t h  occurred. The m a t e r i a l s  were cycled 
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four  t i m e s  every 24 hours from -55°C t o  +lOO°C f o r  a t o t a l  
of 14 days. 
any delaminat ian o r  o the r  evidence of d e t e r i o r a t i o n .  No s 
change i n  room temperature f l e x u r a l  s t r e n g t h  was found fol lowing t h i s  
condi t ion ing .  

Microscopic examination of a l l  specimens d i d  

. A s e r i e s  of e l e c t r i c a  
termine i f  they provided 

t ed  wir ing  conductors.  

a. I n s u l a t i o n  Resis tance.  The i n s u l a t i o n  r e s i s t a n c e  of t he  
nce wi th  the  requirements of 

MIL-STDL202DJ Method 302, Condition B,  us ing  a Kei th ley  Model 515 
megohm bridge.  The t e s t  condi t ions  were 500 v o l t s  DC appl ied  f o r  1 

t e s t  specimens were s tandard Y-pat tern t e s t  boards 
MIL-P-139493, and shown i n  Figure 14. Three specimens 

of each polyimide type were measured and the  va lue  repor ted  i s  an 
average from the th ree  specimens. Measurements were made a t  room 
temperature,  a t  125"C, a t  room temperature following the  125°C exposure,  
and a f t e r  temperature cyc l ing  a t  95% r e l a t i v e  humidity. The da ta  a r e  
summarized i n  Table 5. 

TABLE V. INSULATION RESISTANCE OF PWB MATERIALS 

Board Mater ia l  

EPOXY 

PWB A 

PWB A 

Experimental PWB 

I . R .  (OHMS) 
Room 

Temperature 

45 x 1012 

55 x 1oI2 

75 x 1oI2 

60 x 1OI2 

I . R .  (OHMS) 
Afte r  

I .R .  (OHMS) Humidity 
A t  125°C Cycling 

14 109 5 x 1010 

12 109 15 x l o x 2  

5 109 50 x 10" 

12 109 14 x 1OI2 

I . R .  (OHMS) 
Af t e r  
125 "C 

Exposure 

1 x 1012 

50 x 1 O I 2  

20 x lOI2 

60 x 1 O I 2  

The same boards were used throughout the  tes t  sequence, so  t h a t  any 
degradat ion due t o  the t e s t  environments would be cumulative.  Following 
each of the l a s t  two exposure per iods i n  Table 5 the t es t  boards were 
allowed t o  r e t u r n  t o  ambient condi t ions  and s t a b i l i z e  f o r  1 hour 
before  any i n s u l a t i o n  r e s i s t a n c e  measurement was made. For the t e s t  
a t  125"C, the boards were s t a b i l i z e d  f o r  1 hour a t  t h a t  temperature 
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EXPERIMENTAL PWB PWB A 

PWB B 

FIGURE 14. POLYIMIDE ELECTRICAL TEST SPECIMENS 
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before  a measurement was made. The temperature cyc l ing  exposure a t  
95% r e l a t i v e  humidity cons i s t ed  of 8 cyc le s ,  each of which was 24 hours  
i n  du ra t ion  and composed as follows: 

25°C t o  71OC i n  2 hours 

Hold a t  7 1 O C  f o r  6 hours 

71°C t o  25OC i n  16 hours 

b. D i e l e c t r i c  Constant and Di s s ipa t ion  Factor .  These measure- 
ments were c a r r i e d  out  i n i t i a l l y  a t  lMHz us ing  a General Radio Model 
716-CSI capac i tance  br idge and model 1690 d i e l e c t r i c  sample holder .  
C i r cu la r  PWB specimens 2 inches  (5.08cm) i n  diameter were u t i l i z e d  
wi th  the 0.002 inch  (0.00508 cm) copper f o i l  on each s i d e  t o  se rve  as 
an  in t imate  c o n t a c t  e l ec t rode .  Table 6 shows these da t a  a t  1 MHz. 

TABLE V I .  DIELECTRIC CONSTANT AND DISSIPATION FACTOR FOR PWB LAMINATES 

Board D. C. a t  1 MHz D. F. a t  1 MHz 

EPOXY 4.8 0.019 

Experimental PWB 5.2 0.004 

PWB A 

PWB B 

4.7 

4.3 

0.006 

0.005 

These two d i e l e c t r i c  p r o p e r t i e s  were then measured a s  a func t ion  of 
frequency and temperature as summarized i n  Figures  15 and 16. Measure- 
ments were made over a frequency range of 10 t o  LO Hz us ing  a General 
Radio Model 716C capaci tance br idge,  and over a temperature range of 
25-175°C u t i l i z i n g  an environmental  chamber. 

6 

c. Volume and Surface R e s i s t i v i t y .  These measurements were 
made i n  accordance wi th  the t es t  and specimen conf igu ra t ion  descr ibed 
i n  MIL-P-13949E. The guarded e l ec t rode  specimen w a s  prepared by e t c h i n g  
the  copper f o i l  as i l l u s t r a t e d  i n  Figure 17. The copper f o i l  geometry 
on the opposi te  s i d e  of the specimen i n  Figure 17 was a s o l i d  d i s c  
having a n  i d e n t i a l  diameter a s  the ou te r  diameter of the  concent r ic  
r i n g  shown. The t e s t  w a s  performed w i t h  a Kei th ley  Model 515 megohm 
bridge wi th  a Kei th ley  Model 6105 r e s i s t i v i t y  adapter  a s  the  t e s t  

25 





' 0  
\ 
\ 
\ 
\ 
\ 

I r \  

m 
4% 
cy 

8 
N 

v) 
h 
P 

0 m 
c 

us 
$! 

8 
c 

v) 
h 

0 
v) 

v) 
(Y 

27 



FIGURE 17. POLYIMIDE PWB RESISTIVITY TEST SPECIMEN 
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f i x t u r e .  
Table 7 .  

The d a t a  obtained f o r  the  PWB specimens a r e  presented  i n  

TABLE V I I .  VOLUME AND SURFACE RESISTIVITY FOR POLYIMIDE PWB MATERIALS 

Volume Surf ace 
Board Re s i s  t iv  i t y (Ohm- Cm) R e s i s t i v i t y  (Ohms) 

13 EPOXY 9.5 1.70 x 10 

Ex pe rime n ta  1 1.16 1014 1.65 1 0 ~ 3  

B 1.13  1.40 

13 A 1.15 1.56 x 10 

d ,  D i e l e c t r i c  withstanding Voltage. This  t e s t  w a s  performed 
i n  accordance w i t h  MIL-STD-202D, Method 1, t o  a s s e s s  the a b i l i t y  of the 
polyimide m a t e r i a l s  t o  func t ion  acceptab ly  as d i e l e c t r i c s  under momentary 
surges  of vo l tage  without  apprec iab le  leakage cur ren t .  The t e s t  equip- 
ment cons is ted  of a Peschel Model P1-1OX vo l t age  source,  equipped wi th  
an automatic  vo l tage  r a t e - o f - r i s e  con t ro l  and a microammeter f o r  measuring 
leakage c u r r e n t .  The Y-pattern t e s t  boards were used f o r  t h i s  t e s t .  
The tes t  board leads  were connected t o  the  instrument  and 1000 v o l t s  
AC were appl ied a t  the rate of 500 vol t s / second.  The t e s t  vo l tage  was 
he ld  a t  1000 v o l t s  f o r  1 minute while  monitoring the micrommeter f o r  
any leakage cu r ren t .  Also the conductor t r a c e s  on the t e s t  board were 
observed c l o s e l y  f o r  any evidence of a i r  d i scharge  o r  a rc ing .  The tes t  
was repeated a f t e r  1 hour exposure of the same t e s t  boards a t  100°C 
and aga in  a f t e r  the  boards were temperature cycled f o r  5 days a t  95% 
r e l a t i v e  humidity, us ing  the cyc le  descr ibed e a r l i e r  f o r  the i n s u l a t i o n  
r e s i s t a n c e  t e s t i n g .  The r e s u l t s  a r e  given i n  Table 8. The boards 
were allowed t o  s t a b i l i z e  f o r  1 hour fol lowing each environmental  
exposure t e s t  before  the d i e l e c t r i c  withstanding vol tage  t e s t  was 
performed. 
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TABLE V I I I .  DIELECTRIC WITHSTANDING VOLTAGE TEST ON POLYIMIDE PWB 
MATERIALS 

Board 

EPOXY 

Experimental 

A 

B 

Leakage Current (Microamperes) 
Af te r  Temp. Af t e r  Temp./Hum. 

I n i t i a l  Exposure Exposure 

2.3 1.1 2.8 

2.0 1.3 2.9 

2.5 1.3 2.8 

2.1 1.0 2.8 

e .  Arc Resis tance.  The arc  r e s i s t a n c e  t e s t i n g  w a s  c a r r i e d  
out  on the  polyimides t o  determine t h e i r  a b i l i t y  t o  r e s i s t  formation 
of a conducting path when a high v o l t a g e ' a r c  was appl ied  a t  the  sur face  
of the specimen, The copper f o i l  w a s  removed from specimens 5 inches 
i n  diameter and the t e s t  was performed a s  s p e c i f i e d  i n  MIL-P-13949E 
us ing  an Associated Research Model 8540 Tes t e r  capable of genera t ing  
12.5 k i l o v o l t s .  The d a t a  obtained from t h i s  t e s t  r e f l e c t e d  the time- 
t o - f a i l u r e  of the specimen, where f a i l u r e  was def ined  as genera t ion  
of a continuous a r c  (between the two instrument e l e c t r o d e s )  which 
subsequently d isappears  i n t o  the ma te r i a l .  These d a t a  a r e  presented 
i n  Table 9.  

TABLE E. ARC mSISTANCE TEST DATA FOR POLYIMIDE PWB MATERIALS 

Board 

EPOXY 

Expe r imenta 1 

A 

B 

Time t o  F a i l u r e  (Sec) 

180.2 

185.3 

184.3 

182.4 
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f .  D i e l e c t r i c  Breakdown. This  t e s t  was c a r r i e d  o u t  i n  
accordance w i t h  MIL-P-13949E. 
Research Model 4510-M3 AC h igh  p o t e n t i a l  t es te r  w i t h  appropr i a t e  
specimen f i x t u r e s .  The t e s t i n g  w a s  performed wi th  the vo l t age  app l i ed  
both p a r a l l e l  t o  the plane of the board ac; shown i n  Figure 18 and 
normal t o  the plane of the board by p l ac ing  1 inch diameter  e l e c t r o d e s  
i n  opposing p o s i t i o n s  above and below the  board. The specimens shown 
i n  Figure 18 were prepared by d r i l l i n g  two 0.1875 inch  (0.476 cm) ho le s  
t h a t  were 1 inch  (2.54 cm) a p a r t ,  cen ter - to-center .  The 3.0 inch  
(7.62 cm) tapered e l ec t rodes  were i n s e r t e d  u n t i l  they extended through 
the PWB specimen t o  an equal  length  on each s ide .  The t e s t  f i x t u r e  w a s  
submerged i n  h igh  d i e l e c t r i c  s t r e n g t h  s i l i c o n e  o i l  t o  prevent  f l a sh -  
over between e l e c t r o d e s .  I n  both specimen conf igura t ions  the  vo l t age  
was appl ied  a t  the  ra te  of 500 vol t s / second and continued u n t i l  e i t h e r  
the specimen f a i l e d  o r  the instrument l i m i t  of 50 KV was reached. I n  
the  case of the tapered p i n  e l ec t rode  conf igu ra t ion  (Figure 18) the 
instrument  l i m i t  was reached without  f a i l u r e  f o r  each polyimide as 
w e l l  a s  the epoxy. I n  the opposing e l ec t rode  conf igura t ion ,  however, 
the e l e c t r o d e s  a r e  separated only by the th ickness  of the board specimen 
(nominally 0.062 inch,  0.157 cm.) and d i e l e c t r i c  breakdown was observed. 
Table 10 summarizes these d a t a  f o r  the tes t  boards.  

The equipment cons is ted  of an Associated 

TABLE X. DIELECTRIC BNAKDOWN TEST DATA FOR POLYIMIDE PWB MATERIALS 

Breakdown Voltage Breakdown Voltage Dielectric S t r eng th  
P a r a l l e l  t o  Perpendicular  

Board Board (KV) To Board (KV) (Vo 1 t s / M i l )  

EPOXY 50 38.25 659 

Experimental 50 34.18 600 

A 50 36.94 616 

B 50 43.46 7 1 2  

The numerical va lues  of breakdown vo l t age  were obtained by a stepwise 
vol tage  app l i ca t ion ,  whereby the vol tage  was increased from zero i n  
2.5 KV increments u n t i l  f a i l u r e  occurred. The values  of d i e l e c t r i c  
s t r e n g t h  i n  Table 10 a r e  obtained by d iv id ing  the breakdown vol tage  
by the specimen th ickness ,  and t h i s  parameter i s  convent iona l ly  
expressed as vo l t s /mi l .  
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FIGURE 18. DIELECTRIC BREAKDOWN TEST SPECIMEN 
FOR POLYIMIDE PWB MATERIALS 

3 2  



3. Thermal/Physical Property Evaluat ion.  The tes t s  descr ibed  i n  
t h i s  s e c t i o n  d e a l  p r imar i ly  wi th  the thermal c h a r a c t e r i s t i c s  of the 
polyimide PWB m a t e r i a l s .  
t o  the preceeding sec t ions  a r e  descr ibed  a l s o .  

Other phys i ca l  p roper ty  t e s t s  no t  appropr i a t e  

a .  Linear Coef f i c i en t  of Thermal Expansion (a). The eva lua t ion  
of the thermal expansion c h a r a c t e r i s t i c s  was performed on a Perk in-  
Elmer Model TMS-1 thermomechanical ana lyzer  wi th  a Perkin-Elmer Model 
UU-1 temperature programming c o n t r o l l e r  and a Hewlett-Packard Model 
7001-AR X-Y recorder .  The analyzer  ope ra t e s  by u t i l i z i n g  a l i n e a r  
v a r i a b l e  d i f f e r e n t i a l  t ransformer which se rves  a s  a displacement 
t ransducer  t o  sense changes i n  dimension of the sample and t o  conver t  
them t o  e l e c t r i c a l  s i g n a l  f o r  the X-Y recorder .  

The c r i t i c a l  axis w i t h  r e spec t  t o  the  PWB expansion 
c h a r a c t e r i s t i c s  i s  normal t o  the plane of the board and the t e s t  specimens 
were prepared as d i s c s ,  0.250 inches (0.635 cm)  i n  diameter ,  and having 

* t h e  normal th ickness  of the FWB shee t  from which they were cu t .  This 
thickness  was t y p i c a l l y  0.58 - 0. 2 inch  (0.147 - 0.157 cm). The t e s t  
equipment i s  s e n s i t i v e  t o  5 x LO-' inches/ inch and is  reproducible  on 

-6 .- a given sample t o  w i t h i n  2 1 x 10 inches/inch-°C i n  measurement of 
c o e f f i c i e n t  of expansion (a). The instrument  was programmed i n  the  
expansion mode a t  the r a t e  of 10°C/minute over the temperature range 
of -100°C t o  +25OoC. The instrument output  i s  recorded au tomat ica l ly  
on the X-Y recorder  a s  displacement versus  temperature.  The most 
c r i t i c a l  temperature region was -55OC t o  +lOO°C corresponding t o  the 
thermal cyc l ing  condi t ions  f o r  the t e s t  boards discussed i n  the  next  
s ec t ion .  Thus the expansion c o e f f i c i e n t  (a) f o r  each PWB m a t e r i a l  
r ep resen t s  an  average from -55OC t o  +lOO°C.  For comparative purposes 
a -va lues  over h igher  temperature ranges were a l s o  ca l cu la t ed ,  and a l l  
experimental  da t a  a r e  summarized i n  Table 11. 

TABLE X I .  LINEAR COEFFICIENT OF THERMAL EXPANSION (a) 
FOR POLYIMIDE PWB MATERIALS 

Average (-55°C t o  +lOO"C)  Average (25°C t o  150°C) 
Board (Inche s /Inch- O C) (InchjInch-"C) 

EPOXY 58.7 x lom6 131.0 x low6 

Expe r i m e  n ta 1 21.6 x loe6 25.2 x 

A 47.7 x 56.5 x 

B 47.1 x lom6 55.3 x 1 8  
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The graphs of displacement versus  temperature from which these  d a t a  
a r e  ca l cu la t ed  are very  l i n e a r  through -55°C t o  100°C f o r  the polyimide 
ma te r i a l s .  However, t h i s  range encompasses the  g l a s s  t r a n s i t i o n  (Tg) 
of the epoxy, occur r ing  a t  90-100°C. Below t h i s  temperature,  the a 
(epoxy) i s  comparable t o  those f o r  the polyimides A and B. 

b. Thermal Conductivity.  The thermal conduct iv i ty  of the 
polyimide boards was measured from 25°C t o  150°C wi th  a Dynatech Model 
TCFCM-N20 instrument us ing  the  comparative method. The va lues  were 
obtained from 25-1OO0C, from which an average number f o r  thermal 
conduct iv i ty  was ca l cu la t ed .  

TABLE X I I .  THERMAL CONDUCTIVITY VALUES FOR POLYIMIDE PWB MATERIALS 

Board 

EPOXY 

Experimental 

A 

B 

3 10-4 

5 

c .  Thermal/Vacuum Outgassing. The r a t e  a t  which the polyimide 
products l o s t  weight on hea t ing  i n  a hard vacuum was measured by a Cahn 
e l e c t r o  balance assembly co ta ined  i n  a vacuum b e l l  j a r .  The pressure  
was reduced t o  a t  l e a s t  10 t o r r  and the sample was heated on the 
balance a t  the r a t e  of 2.0°C/minute from 25°C t o  100°C. 
r a t e  was determined from weight loss da ta  p l o t t e d  on a recorder .  The 
da ta  a r e  presented a s  a func t ion  of time and a rea  i n  Table 13. 

-g 
The outgassing 

TABLE X I I I .  OUTGASSING RATES FOR POLYIMIDE FGJB MATERIALS 

Board 

EPOXY 

Rate (Weight Percent/CM2/Hour) 

0.14 

Expe r imenta 1 0.16 

A 0.12 

B 
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This  t es t  was performed i n  accordance w i t h  the  MSFC Document 50M02442, 
"ATM Mate r i a l  Control  f o r  Contamination Due t o  Outgassing. " 

d. Flammability. The f lammabil i ty  of the polyimide PWB 
materials was determined i n  accordance w i t h  MSFC-SPEC-101B. This 
s p e c i f i c a t i o n  has  provis ions  f c r  t e s t i n g  combustible materials i n  
oxygen-enriched environments as w e l l  as s tandard  atmospheric oxygen 
contents .  The specimens f o r  t h i s  t e s t  were 2.5 inches (6.35 cm) by 
12.0 inches (20.48 cm) ,  and were i g n i t e d  by a s i l i c o n e  i g n i t e r  us ing  
bottom i g n i t i o n  so  t h a t  the t e s t  involved an  upward propagat ion rate.  
The three  polyimide boards were t e s t e d  i n  100% gaseous oxygen a t  6.2 p s i a  
and then  i n  normal a i r  us ing  t h i s  method, and the  r e s u l t s  a r e  given 
i n  Table 14. 

' TABLE X I V .  FLAMMABILITY CHARACTERISTICS OF POLYIMIDE PWB MATERIALS 

Board 
100% 
-2 0 A i r  - 

Experiment a 1 Pass Pass  

A F a i l  Pass 

B F a i l  Pass  

Epoxy (Type GH)* F a i l  Pass 

*GH: Heat r e s i s t a n t ,  f i r e  r e t a r d a n t  class of epoxy laminate 

I n  t h i s  t es t  the  sample i s  considered t o  pass i f ,  on upward propagation, 
t he  flame se l f - ex t ingu i shes  w i t h i n  6 inches (15.24 cm) from the bottom 
of the sample. 

e .  Water AbsQrption. The water absorp t ion  of the  polyimide 
PWB samples w a s  measured by submerging preweighed, 1 inch  square 
(6.45 cm2) samples i n  d i s t i l l e d  water f o r  24 hours a t  25'C. The 
samples were removed from the  water ,  pa t t ed  d ry  wi th  a paper towel and 
reweighed on an  a n a l y t i c a l  balance.  The weight change i n  percent  was 
used t o  r ep resen t  the water absorp t ion  as shown i n  Table 15. This 
t a b l e  a l s o  r e f l e c t s  the water  absorp t ion  a t  e l eva ted  temperature.  
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TABLE XV. WATER ABSORPTION FOR POLYIMIDE PWB MATERIALS 

Board 

EPOXY 

H20  Abs. Af t e r  H20 Abs. A f t e r  
24 Hrs./25"C Mat. %) 1 H r . / l O O ° C  (wgt. %) 

0.496 0.176 

Expe r imenta 1 0.336 0.128 

A 0.217 0.114 

B 1.08 0.648 

C.  Thermal Cycling S tudies  

This  s e c t i o n  of the polyimide PWB eva lua t ion  d e a l s  wi th  assessment 
of the e f f e c t  of expansion normal t o  the plane of the boards on so lde r  
j o i n t  i n t e g r i t y  during thermally-induced s t r e s s i n g  of the j o i n t s .  For 
t h i s  t e s t  sequence, t h r e e  boards each represent ing  the epoxy, exper i -  
mental polyimide, and commercial polyimides A and B,  were processed 
and etched i n  accordance wi th  the previous s e c t i o n  on processing. An 
appropr ia te  t e s t  c i r c u i t  p a t t e r n  was used t o  allow a wide range of 
components and j o i n t  conf igura t ions .  Each t e s t  board was 3.5 by 4.5 
inches (8.89 by 11.43 cm) and contained the fol lowing components o r  
j o i n t  terminat ions : 

10 R e s i s t o r s ,  RC07, 1 / 4  wa t t  
16 Capaci tors ,  kidney 

2 Relays,  8-lead 
1 In teg ra t ed  c i r c u i t ,  f l a t  pack 
1 In teg ra t ed  c i r c u i t ,  dua l  i n - l i n e  

8 T r a n s i s t o r s ,  TO-18 
10 T r a n s i s t o r s ,  TO-5 

2 1  Jumpers, b rass  wire, 22 gage 
2 1  Jumpers, copper wire ,  22 gage 
1 Connector, 23 p in  

20 Terminals,  7-TAT-2 
20 Terminals,  1-TAT-2 

The components were soldered t o  the etched boards i n  accordance wi th  
s tandard MSFC solder ing/ techniques  f o r  f l i g h t  hardware. Each board 
thus assembled contained a t o t a l  of 337 soldered connections,  o r  a 
t o t a l  of 1,011 j o i n t s  from each board type,  The te rmina ls  were soldered 
on each s i d e  of the boards t o  provide the  p o t e n t i a l  f o r  a h ighly  s t r e s s e d  
j o i n t .  The two s i d e s  of a t y p i c a l  assembled t e s t  board are shown i n  
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Figure  19. The boards were subjected t o  a p r e - t e s t  microscopic in spec t ion  
t o  assure  the i n i t i a l  i n t e g r i t y  of each so lde r  connection. A thermal 
cyc l ing  t e s t  was then  i n i t i a t e d ,  c o n s i s t i n g  of r e p e t i t i v e  cyc le s  of 
approximately 1.5 hours i n  du ra t ion  providing temperature extremes of  
-55°C t o  +lOO°C.  A t y p i c a l  cycle  p r o f i l e  i s  as follows: 

(1) 25°C t o  100°C i n  15 minutes 

(2)  Soak a t  100°C f o r  10 minutes 

(3) 100°C t o  -55OC i n  30 minutes 

( 4 )  Soak a t  -55OC f o r  10 minutes 

(5) -55'C t o  25°C i n  15 minutes 

I n - t e s t  microscopic examinations of each j o i n t  on each board were made 
a t  the  end of 4 ,  10, 25, 51, 105, 152, 200, 340,  and 500 cyc les ,  a f t e r  
which the  t e s t  w a s  terminated.  
exposure on the j o i n t s  were recorded as e i t h e r  cracking o r  o the r  
evidence of s t r e s s ,  according t o  j o i n t  conf igura t ion .  The so lde r  
connections were formed from a v a r i e t y  of j o i n t  conf igura t ions  on the  
board as l i s t e d  below: 

The e f f e c t s  of the c y c l i c  temperature 

(1) Small t e rmina ls  (on and off-pad te rmina t ions)  

(2) Large te rmina ls  (on and off-pad terminat ions)  

(3) Feed-through jumper wires (on and off-pad te rmina t ions)  

(4)  Connector te rmina ls  

(5) Dual i n - l i n e  l eads  

(6) T rans i s to r  l eads  (on and off-pad te rmina t ions)  

( 7 )  Capacitor l eads  (on and off-pad te rmina t ions)  

(8) Res i s to r  l eads  (on and off-pad te rmina t ions)  

(9) Relay te rmina ls  

(10) F l a t  pack Leads 

Of these  conf igura t ions ,  only items (l), (2), ( 3 ) ,  (4 ) ,  and (5) 
r e f l e c t e d  s i g n i f i c a n t  j o i n t  cracking.  A series of graphs,  20 through 
25, r e f l e c t  the  incidence of cracking as a func t ion  of number of cyc le s  
f o r  these f i v e  conf igu ra t ions ,  I n  each graph the number of cracks 

37 



FIGURE 19.  TYPICAL POLYIMIDE TEST PWB 
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p l o t t e d  r ep resen t s  a sum over a l l  th ree  boards of a p a r t i c u l a r  type.  
Also  ind ica ted  on the graph i s  the t o t a l  number (from th ree  boards) of 
j o i n t s  of the p a r t i c u l a r  conf igura t ion  being p l o t t e d .  

The epoxy board samples were expected t o  r e f l e c t  s o l d e r  j o i n t  
cracking e a r l y  i n  the t e s t ,  due t o  the h igh  expansion c o e f f i c i e n t  of 
t h i s  ma te r i a l  normal t o  the plane of the board,  and t h i s  t rend  was 
observed i n  the t e s t  da t a  as i l l u s t r a t e d  i n  Figure 20. The cracking 
i n i t i a t e d  i n  these  boards a t  some po in t  between cyc le s  1 and 4 ,  when 
the  f i r s t  i n spec t ion  was made. The heav ie s t  incidence of cracking f o r  
the epoxy and commercial boards A and B w a s  observed i n  the  te rmina l  
j o i n t  conf igura t ions  i l l u s t r a t e d  by Figures  20, 21, and 22. The out-  
s tanding  except ion  t o  t h i s  t rend  was the experimental  board which had 
no cracked j o i n t s  f o r  any terminal  conf igura t ions  through the 500 cyc le  
t e s t  du ra t ion .  Of the two commercial polyimides,  board B appears t o  
con t r ibu te  l e s s  t o  j o i n t  cracking f o r  t h i s  conf igura t ion .  The same 
gene ra l  t rend i s  observed f o r  the 4 board types f o r  the feed-through 
jumper wires  (Figure 23). I n  the case of connector te rmina ls  and dua l  
i n - l i n e  leads the  t rend  changes and the epoxy i s  no longer  the worst  
o f fender  (F igures  24 and 25). 

The t o t a l  number of c racks  from every j o i n t  conf igu ra t ion  a s  a 
func t ion  of cyc l ing  i s  depicted i n  Figure 26. Again the number of 
cracks r ep resen t  a sum over 3 boards f o r  each board type.  This 
information i s  presented i n  percentage form i n  Table 16, based on the 
incidence of cracking i n  each board m a t e r i a l  a f t e r  500 cyc les .  

TABLE: XVI .  PERCENT CRACKS FROM ALL CONFIGURATIONS AFTER 500 
CYCLES FOR POLYIMIDE PWB MATERIALS 

Board % Crack& 

EPOXY 21.8 

Expe r ime n t a  1 2.47 

A 15.8 

B 16.3 

;kBased on t o t a l  va lues  summed over 3 tes t  boards of each type 
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The photographs i n  Figures  2 7 ,  2% i l l u s t r a t e  the s e v e r i t y  of 
c racking  i n  va r ious  j o i n t  conf igura t ions .  
could q u i t e  e a s i l y  r ep resen t  an e l e c t r i c a l l y  i s o l a t i n g  c rack  t h a t  
would lead t o  c i r c u i t  f a i l u r e .  

The condi t ion  i n  Figure 29 

DISCUSSION 

A. Experimental Board Fabr i ca t ion  

The bas i c  des ign  of the experimental  polyimide board has  been 
shown t o  r e s u l t  i n  the des i r ed  program goa l s ,  e s p e c i a l l y  i n  the 
c r i t i c a l  a r e a  of expansion normal t o  the plane of the board. It i s  
bel ieved t h a t  the p a r t i c u l a t e  f i l l e r  and the  polyimide (with no polymer 
g l a s s  t r a n s i t i o n  below 100°C) provide n e a r l y  the  e n t i r e  c o n t r o l  of 
expansion of the PWB i n  t h i s  axis. 
when s tudied  from photomicrographs of sec t ioned  laminate,  has  l i t t l e  
o r i e n t a t i o n  normal t o  the laminate plane and i s  considered t o  e x e r t  
p ropor t iona te ly  l e s s  con t ro l  over expansion. 

The t r i d i r e c t i o n a l l y  woven c l o t h ,  

The b a s i c  m a t e r i a l s  s e l e c t i o n  f o r  the  experimental  board i s  expected 
t o  allow standard PWB processing.  A l l  these  m a t e r i a l s  a r e  commercially 
a v a i l a b l e  a s  s tandard i tems wi thout  s p e c i a l  o rder ing  o r  f a b r i c a t i o n .  
The polyimide r e s i n  i s  processed by convent ional  prepreg techniques.  
The main depar ture  from standard laminate technology i s  i n  in t roduc t ion  
of the  p a r t i c u l a t e  f i l l e r .  A t  20 percent  by volume f i l l e r  loading,  a 
non- se t t l i ng  d i spe r s ion  forms which r e s u l t s  i n  homogeneous depos i t i on  
on the c l o t h  a t  the prepreg s t age .  The s i l a n e  add i t ive  i n  t h i s  mixture 
promotes good adhesion of the r e s i n  mat r ix  t o  the f i l l e r .  The 316°C 
laminat ing temperature f o r  the laminate-forming process i s  q u i t e  h igh  
r e l a t i v e  t o  normal epoxy technology, bu t  has become accepted by polyimide 
laminate producers as a working condi t ion  t h a t  can be met us ing  high 
temperature presses .  I n  genera l ,  the  experimental  board i s  seen a s  
a product  t h a t  i s  commercially f e a s i b l e  w i t h  l i t t l e  depar ture  from 
normal polyimide processing technology. 

B. PWB Evaluat ion Analysis  

Acceptable d r i l l i n g  techniques have been devised f o r  polyimide 
boards. Two precaut ions  which must be followed a r e  the  reduct ion  i n  
d r i l l  speed t o  the range of 600-2500 rpm and use of a hard back-up 
m a t e r i a l  such as G-10 epoxy laminate f o r  the d r i l l i n g  opera t ion .  B e t t e r  
copper fo i l / l amina te  bond i n t e g r i t y  i s  a l s o  obtained by us ing  a process- 
i ng  sequence of d r i l l i n g  before  e tch ing .  
f o i l  l ayer  i s  a v a i l a b l e  t o  resist  debonding dur ing  d r i l l i n g ,  r a t h e r  
than  j u s t  the so lde r  pad. While t e s t  coupons such as the one i n  

I n  t h i s  manner, the  e n t i r e  
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FIGURE 27. CRACKED SOLDER- COJYFECTION AFTER 
4 CYCLES FROM EPOXY PWB, SMALL 
TERMINAL (20X) 
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FIGURE 28. CRACKED SOLDER CONNECTION AFTER 500 CYCLIZS 
FROM EPOXY PWB9 LARGE TERMINAL (15X) 
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FIGURE 29. CRACKED SOLDER CONNECTION AFTER 
105 CYCLES FROM COMMERCIAL FWB 
B (15X) 
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Figure  7 i n d i c a t e  adequate bond o f  the so lde r  pad t o  withstand the 
d r i l l i n g  opera t ion ,  the polyimide laminate i s  normally more suscep t ib l e  
t o  r e s i n - r i c h  and resin-poor  areas than i s  the  epoxy lamina te ,  so t h a t  
the copper/laminate bond s t r e n g t h  might vary  considerably.  
d r i l l i n g  sequence and back-up shee t  precaut ions  a r e  advisable  as 
s tandard  processing opera t ions .  

Thus the 

A l l  of the polyimide boards can be processed by s tandard epoxy 
PWB technology w i t h  one important dev ia t ion .  It i s  e s s e n t i a l  t h a t  
exposure t o  ho t ,  a l k a l i n e  s o l u t i o n s  be l imi t ed  t o  very  s h o r t  per iods.  
Continued exposure would hydrolyze the imide r i n g  i n  the polymer backbone 
back t o  i t s  precursor ,  the  polyamic ac id ,  which could undergo f u r t h e r  
base-catalyzed hydro lys is  t o  give d i a c i d  and amine fragments as products  
of cha in  cleavage. This l a s t  process r ep resen t s  c a t a s t r o p h i c  degradat ion 
of the polymer by s i g n i f i c a n t l y  lowering i t s  molecular weight and, 
concomitantly,  i t s  mechanical and phys ica l  p r o p e r t i e s .  Cleaning o r  
p l a t i n g  processes  involving polyimides should seve re ly  res t r ic t  the 
use of a l k a l i n e  materials. 

I n  comparative eva lua t ion  of mechanical p r o p e r t i e s  of the  polyimide 
materials r e l a t i v e  t o  the type G-10 epoxy PWB, an outs tanding  advantage 
of the  polyimide m a t e r i a l  i n  genera l  i s  i t s  r e l a t i v e  independence of 
mechanical p r o p e r t i e s  on temperature over the opera t ing  range of most 
e l e c t r o n i c  hardware. A s  evidenced i n  the  copper pee l  s t r e n g t h  va lues  
i n  Table 4 ,  the  epoxy PWB pee l  s t r e n g t h  has  a higher  room-temperature 
va lue  than does the  polyimide, while a t  150'6 the polyimide s t r e n g t h  
i s  77.9-99.1 N/M (8.8-11.2 poundslinch) b u t  t he  epoxy pee l  s t r e n g t h  
dropped t o  36.3 N/M (4.1 pounds/inch),  which r ep resen t s  marginal 
adhesion. This has important impl ica t ions  i n  PWB rework, s ince  the 
deso lder ing  opera t ion  t o  rep lace  components n e c e s s i t a t e s  hea t ing  the  
j o i n t  and the  so lde r  pad t o  180-185OC t o  m e l t  the  so lde r ,  and provides 
the mechanism f o r  debonding the  so lder  pad from the board. Thus 
r e t e n t i o n  of copper/board adhesion a t  so lde r  mel t ing  temperatures i s  
q u i t e  important.  
than  53.1 N/M ( 6.0 pounds/inch) because t e n s i l e  f a i l u r e  of the copper 
s t r i p  occurred a t  t h i s  temperature r a t h e r  than  adhesive f a i l u r e  t o  the  
laminate ,  The pee l  s t r eng ths  of the polyimides a r e  p ro jec t ed  t o  be 
s l i g h t l y  g r e a t e r  than  53.1 N/M a t  260OC. The experimental  board held 
up adequately through the  va r ious  environmental  exposures a l though n o t  
as w e l l  as boards A and B. The terminal  p u l l  t e s t  r e f l e c t e d  the same 
t rend  a s  shown i n  Figure 10, where the epoxy i n i t i a l l y  requi red  a h igher  
t e n s i l e  force  t o  p u l l  o f f  the  soldered lead ,  bu t  t h i s  va lue  dropped 
s i g n i f i c a n t l y  between 75 and 100°C coinc id ing  wi th  the  g l a s s  t r a n s i t i o n  
range of the epoxy laminate.  This i s  no t  a f o r t u i t o u s  event ,  s ince  
t r a n s i t i o n s  of t h i s  type i n  polymers are sometimes accompanied by 
gross  changes i n  mechanical p rope r t i e s ,  among them being adhesion. I n  
the terminal  p u l l  t es t ,  the l i m i t i n g  f a c t o r  w a s  no t  loss of adhesion 
but  r a t h e r  mel t ing  of the s o l d e r  ( e u t e c t i c  so lde r ,  63/37 SN/Pb, m e l t s  

The va lues  a t  26OOC i n  Table 4 a r e  given as g r e a t e r  
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a t  1 8 3 ° C ) .  The f l e x u r a l  s t r e n g t h  t e s t s  aga in  r e f l e c t e d  t h i s  t r end ,  
wi th  the  epoxy laminate  decreas ing  s u b s t a n t i a l l y  i n  f l e x u r a l  s t r e n g t h  
i n  the  reg ion  of i t s  g l a s s  t r a n s i t i o n .  

The e l ec t r i ca l  t e s t  r e s u l t s  gene ra l ly  i n d i c a t e  t h a t  the  polyimide 
boards are equiva len t  t o  the type G - 1 0  epoxy m a t e r i a l .  One important  
except ion t o  t h i s  t rend  i s  the improved s t a b i l i t y  of d i e l e c t r i c  cons tan t  
and d i s s i p a t i o n  f a c t o r  of the polyimide a s  a func t ion  of temperature 
or  frequency. A t  the  r i s k  of boring the reader ,  the  g l a s s  t r a n s i t i o n  
of the epoxy i s  aga in  ind ic t ed  a s  a b a s i s  f o r  t h i s  m a t e r i a l ' s  temperature- 
dependent d i e l e c t r i c  cons tan t  and d i s s i p a t i o n  f a c t o r  a s  i l l u s t r a t e d  i n  
Figures  15 and 16. Above the g l a s s  t r a n s i t i o n  temperature of the epoxy, 
the molecular motion of s i d e  cha ins  and t h a t  of the main polymer back- 
bone increases  tremendously, r e s u l t i n g  i n  increased d ipole  i n t e r a c t i o n  
and d i e l e c t r i c  loss. By comparision, the d i e l e c t r i c  p r o p e r t i e s  of the 
polyimides a r e  a f f e c t e d  only very  s l i g h t l y  over the range of 25-175°C. 
The numerical va lue  of d i e l e c t r i c  cons tan t  f o r  the experimental  polyimide 
i s  somewhat higher  than A and B, a l though i t s  d i s s i p a t i o n  f a c t o r  i s  
lower. 

The i n s u l a t i o n  r e s i s t a n c e  of the  th ree  polyimides i s  q u i t e  compar- 
ab le ,  both a t  ambient condi t ions  and a f t e r  environmental condi t ion ing .  
A s l i g h t  improvement i s  observed over the epoxy PWB. 

Volume and sur face  r e s i s t i v i t y ,  d i e l e c t r i c  withstanding vo l t age ,  
a r c  r e s i s t a n c e  and d i e l e c t r i c  breakdown measurements on the four  t e s t  
ma te r i a l s  show comparable numerical  va lues ,  w i th  no s i n g l e  m a t e r i a l  
cons is  t e n t  l y  b e t t e r  than  another .  

Perhaps the most r evea l ing  proper ty  measurement i n  the  e n t i r e  PWB 
eva lua t ion  s e c t i o n  i s  t h a t  of l i n e a r  c o e f f i c i e n t  of thermal expansion 
(a). The measurements were made q u i t e  accu ra t e ly  i n  an a x i s  normal 
t o  the plane of the boards using the  automated thermal a n a l y s i s  equip- 
ment descr ibed i n  a previous sec t ion .  The primary a -va lues  were 
ca l cu la t ed  a s  an average over the range of -55 t o  +lOO°C t o  coincide 
wi th  the thermal cyc l ing  s t u d i e s .  A s  ind ica ted  i n  Table 11, the 
experimental  board has an a -va lue  over  twice as l o w  a s  e i t h e r  commercial 
polyimide, and t h i s  t rend  holds f o r  both temperature ranges. The 
d ispropor t iona te  inc rease  i n  the a (epoxy) over the h igher  range 
r e f l e c t s  the e f f e c t  of the  g l a s s  t r a n s i t i o n  i n  t h a t  material .  The 
polyimides a r e  a l l  cha rac t e r i zed  by a reasonably l i n e a r  increase  i n  
expansion wi th  temperature up t o  approximately 200"C, where a l l  th ree  
ma te r i a l s  begin a g r e a t e r  expansion r a t e  wi th  temperature. The lower 
expansion c o e f f i c i e o t  f o r  the experimental  polyimide i s  r e f l e c t e d  q u i t e  
v i v i d l y  i n  the thermal cyc l ing  t e s t  r e s u l t s .  

The r e s u l t s  of the thermal conduct iv i ty  measurements a l s o  po in t  t o  
an improvement i n  the  case  of the experimental  board. The approximately 
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two-fold increase  i n  thermal conduct iv i ty  i s  apparent ly  due t o  a much 
more e f f i c i e n t  thermal pa th  c rea t ed  by the  alumina p a r t i c l e s .  This 
property al lows the PWB t o  func t ion  more e f f e c t i v e l y  as a thermal s i n k  
t o  d i s s i p a t e  h e a t  from hea t -genera t ing  components. 

The thermal/vacuum weight l o s s  t e s t s  were c a r r i e d  o u t  on the 
polyimides t o  determine i f  they contained a s i g n i f i c a n t  amount of 
v o l a t i l e  m a t e r i a l s  which might recondense on c r i t i c a l  o p t i c a l  su r f aces  
of experiments o r  equipment i n  space. The epoxy as w e l l  as the 
experimental  board and board A were wi th in  the  acceptable  outgassing 
l e v e l s  e s t a b l i s h e d  i n  MSFC Document 50M02442 f o r  c r i t i c a l  o p t i c a l  
sur faces .  The polyimide B w a s  considerably higher  and t h i s  i s  c o n s i s t e n t  
w i th  the moisture  absorp t ion  d a t a  which a l s o  r e f l e c t e d  a higher  moisture  
absorp t ion  f o r  polyimide B. The weight loss  i n  m a t e r i a l s  of t h i s  type 
can genera l ly  be ascr ibed  e i t h e r  t o  removal of v o l a t i l e s  produced i n  
the  laminate-forming s t e p  o r  from atmospheric moisture  permeating the  
somewhat more porous s t r u c t u r e .  This po ros i ty  would a l s o  exp la in  the  
increased moisture  absorp t ion  i n  B. 

The f lammabil i ty  t e s t s  performed o n - t h e  polyimides were those used 
t o  q u a l i f y  materials f o r  use i n  100% gaseous oxygen environments aboard 
the  Skylab workshop. The experimental  board alone passed t h i s  t e s t ,  
which implies  a lower organic  r e s i n  conten t .  This i s  obviously the 
case ,  s ince  the  inc lus ion  of 20% f i l l e r  reduces the o v e r a l l  polyimide 
r e s i n  content  r e l a t i v e  t o  the  o the r  boards.  The commercial boards A 
and B r e a d i l y  passed the t e s t  when conducted i n  a i r .  

The r e s u l t s  of the thermal cyc l ing  s t u d i e s  c a r r i e d  ou t  on the 
t e s t  boards serve  genera l ly  t o  r e in fo rce  the convic t ion  a t  the beginning 
of t h i s  program t h a t  e f f e c t i v e  c o n t r o l  of expansion i n  the a x i s  normal 
t o  the  plane of the board would s i g n i f i c a n t l y  reduce PWB so lde r  j o i n t  
cracking.  The experimental ly  measured va lues  of a i n  Table 11 rep resen t  
very  nea r ly  a d i r e c t  c o r r e l a t i o n  wi th  the cyc l ing  t e s t  r e s u l t s  presented 
i n  Table 16 and i n  Figure 26. 

There a r e  two seemingly anomolous t e s t  r e s u l t s ,  i n  the  connector 
te rmina l  and dua l  i n - l i n e  j o i n t  conf igura t ions .  Refer r ing  t o  Figure 
24 ,  a l l  boards show cracking a f t e r  200 cyc le s  f o r  the connector 
conf igura t ion ,  a l though the experimental  s t i l l  has the lowest o v e r a l l  
incidence of cracking.  The connector body i s  normally cons t ruc ted  of 
molded nylon o r  d i a l l y l  ph tha la t e ,  both of which a r e  r e l a t i v e l y  high- 
expansion m a t e r i a l s .  The connector body i s  pul led  f l u s h  a g a i n s t  the  
PWB sur face  and cons t ra ined  by the so lde r  connection. Thus a c e r t a i n  
amount of stress should be t ransmi t ted  t o  the  so lde r  j o i n t  through 
t e n s i l e  and compressive loading of the lead  by the high-expansion 
connector body during thermal cycl ing.  This  obviously i s  no t  a func t ion  
of the expansion c h a r a c t e r i s t i c s  of the PWB, and the connector configu- 
r a t i o n  da ta  should be assessed wi th  t h i s  i n  mind. 
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I n  the case of the dua l  i n - l i n e  conf igura t ion  d a t a  (Figure 25) 
the experimental  board had a r e l a t i v e l y  high incidence of cracking.  
This condi t ion  seems t o  have no s a t i s f y i n g  explana t ion  t o  d a t e .  The 
leads  were not  soldered on the component s i d e ,  and the component was 
we l l  up o f f  the board so  the board could expand and c o n t r a c t  around 
the leads  without  t r ansmi t t i ng  stress t o  the j o i n t s .  This anomoly w i l l  
be pursued i n  f u r t h e r  s t u d i e s .  

CONCLUSIONS 

This development program has culminated i n  a new, low-expansion 
polyimide PWB which minimizes so lde r  j o i n t  c racking  due t o  board 
expansion and con t r ac t ion .  The experimental  board i s  f ab r i ca t ed  from 
commercial ma te r i a l s  w i th  s t a t e - o f - t h e - a r t  polyimide laminate technology. 
With the except ion of r e s t r i c t i o n s  on d r i l l i n g  and a l k a l i n e  s o l u t i o n  
exposure,  the polyimides adapt  reasonably we l l  t o  epoxy PWB technology. 
In  terms of  mechanical, e l e c t r i c a l ,  and thermal p r o p e r t i e s ,  the polyimides 
a r e  equal  or  supe r io r  t o  the epoxy i n  near ly  every in s t ance .  

Now, i n  comparing the three  polyimides the message from the thermal 
cyc l ing  s tudy i s  t h a t  the commercial boards A and B do not  have a 
s u f f i c i e n t l y  l o w  a normal t o  the plane of the board t o  r e s u l t  the needed 
improvement over G - 1 0  epoxy performance. O f  the m a t e r i a l s  i nves t iga t ed  
i n  t h i s  s tudy,  only the experimental  board provides the very  low incidence 
of so lde r  j o i n t  c racking  required i n  high r e l i a b i l i t y  space hardware 
e l e c t r o n i c s .  
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APPENDIX 

PWB PRODUCTION 

I. Mate r i a l s  and Sources 

A .  

B. 

C ,  

D. 

E. 

F. 

P13N Polyimide Resin 
TRW Systems, Redondo Beach, Ca l i fo rn ia  
Geigy Chemical, Ardsley,  New York 

GT t r e a t e d  Copper F o i l  
C i r c u i t  Fo i l  Corporation, Bordentown, New J e r s e y  

7628 Fabr ic  
Burl ington Glass Fabr ics ,  New York, New York 

Tricon HS-1 Fabr ic  
A .  Wimpfheimer & Brothers ,  Inc . ,  Stonington, Connecticut 

Alumina (A-14) Hard F i red ,  B a l l  Milled 
Alcoa 

A-1100 Coupling Agent 
Union Carbide, S i l i cone  Div is ion  
New York, New York 

11. Impregnating Systems 

A.  Resin: TRW P13N Polyimide, 40 22.0 percent  s o l i d s  
Solvent :  Dimethylformamide 
Vi scos i ty  a t  25°C: 200-300 cps 

B. Copper Primer: 
P13N Polyimide r e s i n  - 2 m i l  d r i e d  coa t ing  

C. Fabr ic  Impregnating System 
Resin: 40 percent  s o l i d  ---------- 75.20 weight percent  
Alumina (A-14) - - - - - - - - - -p- -I - - - - I  24.03 weight percent  
A-1100 ---_-_--I----_-----_____I__ 0.77 weight percent  

Any mixing procedure w i t h  s u f f i c i e n t  shear  t o  break up powder 
agglomerates can be used. Experimental systems have been homogenized 
by r o l l i n g  a can conta in ing  ceramic b a l l s  on slow-speed r o l l s .  Larger 
q u a n t i t i e s  have been blended us ing  a d i s p e r s a t o r  high-speed mixer, 
however, ca re  must be taken t o  avoid hea t ing  the system. 
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111. Coating and Impregnating Procedures 

A Dixon coa te r  was used f o r  coa t ing  both the 7628 and HS-1 f ab r i c .  
The coa t ing  t r ave r se  and condi t ions  used a r e  shown i n  Figure 30. 
Good we t t ing  and pickup w a s  obtained wi th  t h i s  system. Nip- ro l l  
s e t t i n g s  of 15 and 31 m i l s  were used f o r  the 7628 and HS-1 r e i n f o r c e -  
ments r e spec t ive ly .  Maximum dwell  t i m e  (15 minutes) was adequate t o  
dry  the system t o  touch, bu t  no t  t o  a tack-free s ta te .  Consequently, 
a t h i n  Mylar p a r t i n g  f i l m  was fed i n t o  the r o l l  i n  the rewind s t e p .  
Some tacking  t o  the Teflon-coated r o l l s  was experienced due t o  the 
slow dry ing  c h a r a c t e r i s t i c s  of the so lvent .  Accordingly, i t  i s  bel ieved 
t h a t  a 30 f o o t  o r  h igher  v e r t i c a l  oven would perform somewhat b e t t e r  
wi th  t h i s  system. Although recommended drying time f o r  the P13N r e s i n  
i s  15 minutes 60°C, experience has shown t h a t  b l i s t e r i n g  occurs unless  
a longer drying time i s  used. I n  the absence of a continuous u n i t  f o r  
completion of the dry ing  and prepreging s t e p ,  these  reinforcements  
were sect ioned i n t o  shee t s  12-1/2 x 12-1/2 inches f o r  subsequent 
laminating. A number of shee t s  were suspended on a l ight-weight  metal  
frame and placed f i r s t  i n  a 6OoC oven f o r  30 minutes followed by 1 
hour i n  a 204°C oven. 

Laminating s ized  shee t s  of copper (12-3/4 x 12-3/4 inches)  were 
s l ipped  t o  l ight-weight  metal  p l a t e s ,  coated, and placed f i r s t  i n  a 
60°C oven f o r  1/2 hour followed by 1 hour i n  a 204OC oven, No d i f f i c u l t y  
was noted i n  the processing o r  handl ing of e i t h e r  the impregnated f a b r i c s  
or  the coated f o i l  which would preclude the use of continuous u n i t s  
wi th  the necessary range of speeds and temperatures.  

I V .  Laminating Procedures 

A. Sheet preparation--None was needed. However, these may be 
p re f l a t t ened ,  i f  necessary,  by l i g h t l y  press ing  i n  a 15OOC press .  
(Conventional impregnation and drying procedures provide adequate 
c o n s t r a i n t  t h a t  t h i s  precaut ion  i s  unnecessary.)  Sheets  are trimmed 
t o  a square pa t t e rn .  

B. Lay-up--This c o n s i s t s  of a three-ply HS-1 core  and a s i n g l e  
ply of 7628 c l o t h  on each s ide .  
previous p ly  i n  the s t ack .  The lay-up is  topped w i t h  the precoated 
copper f o i l .  

Each ply i s  r o t a t e d  90" from the 

C. S tab i l iza t ion- -Smal l  s i zed  labora tory  lay-ups inc luding  the 
Larger 12-1/2 x 12-1/2 inch  laminates  were t i e d  t o  prevent  s h i f t i n g .  

s ized  lay-ups should have adequate con tac t  a r ea  t o  prevent  s i g n i f i c a n t  
s h i f t  dur ing  press ing .  

D. I s o l a t i o n  plates--1/32 inch  polished s t a i n l e s s  s t e e l  shee ts .  
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E. Prehea t  and v o l a t i l e  reduction--Contact pressure  i n  a pre-  
heated (343Oc) p re s s  f o r  t i m e  necessary t o  degas and h e a t  matrix. 
Time i s  h ighly  dependent upon hea t ing  r a t e ,  and rap id  h e a t i n g  appears 
d e s i r a b l e .  P re s s  c o n t r o l s  reduced t o  316OC before  i n s e r t i o n  of laminate.  
(Contact time may be a s  s h o r t  as 30 seconds o r  as long as 6-1/2 minutes 
depending upon hea t ing  r a t e  .) 

F. Lamination--Raise pressure  t o  1000 t o  1500 p s i  and hold 1 hour 
a t  316'6, 

G. Board may be cooled under pressure o r  pu l led  h o t .  It i s  
advisable ,  however, t o  keep the  s t a c k  i n t a c t  t o  minimize thermal shock 
and poss ib le  warping. 

V. Spec i f i ca t ions  

A .  Matrix: Development s t u d i e s  i n d i c a t e  a good balance of 
thermal p rope r t i e s  a r e  achieved a t  a f i l l e r  l e v e l  of 22.5 volume- 
percent .  

B. Prepreg: Laminate f a b r i c a t i o n  and p r o p e r t i e s  appear t o  
reach an optimum around 35 w/o mat r ix  i n  the f a b r i c s .  
impregnation i s  t a rge ted  t o  t h i s  value.  

Accordingly, 

C.  Copper primer: Two m i l s  of P13N a f t e r  drying and prepreging 
is  des i r ed .  

D. Laminate: When f ab r i ca t ed  wi th  the following components:, 

Coppe r : Two faces  - 2 m i l s  nea t  r e s i n  
7628: 
HS-1: Three p l i e s  - 35 w/o mat r ix  

TWO p l i e s  - 35 w/o matrix 

and laminated a s  descr ibed e a r l i e r ,  the th ickness  f a l l s  w i t h i n  the 
to l e rances  of the G-10 s p e c i f i c a t i o n s .  
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